Friday, March 23, 2018

Game Theory Primer


  • Game theory is a way of strategic interactions between self-interested people. It relates to how self-interested participants would behave in strategic interactions. 
  • A game in general is any interaction between two or more people where the outcomes depend on what every body does or what every body has.  




















Source: Coursera, Game theory course.

The questions to ask:
  • What action should a player of the game take?
  • Would all users behave the same in this scenario?
  • What global behavior patterns should a system designer expect?
  • For what changes to the numbers would behavior be the same?
  • What effect would communication have?
  • Repetitions? (Finite? Infinite?) 
  • Does it matter if I believe that my opponent is rational?
What does it mean to say that the agent is self-interested?
  • It does not mean that they want to harm others or only care about themselves. 
  • only that the agent has his own description of states of the world that it likes, and acts based on this description. 
Each agent has a utility function. 
  • quantifies degrees of preference across alternatives
  • explains the impacts of uncertainty
  • Decision-theoretic rationality: act to maximize expected utility. There is a basic theorem (von Neumann and Morgenstern, 1944) that derives the existence of a utility function from a more basic preference ordering and axioms of such offerings. 
Defining a game: Key Ingredients

  • Players: who are decision makers? 
    • people? governments? companies?
  • Actions: Enter a bid in auction? Decide whether to end a strike? Decide when to sell a stock? Decide who to vote?
  • Payoffs? 
    • What motivates players? Do they care about some profits? Do they care about other players? 
Defining Games: Two Standard Representations

  • Normal form (a.k.a. Matrix Form, Strategic Form) List what payoffs get as a function of their actions
    • It is as if players moved simultaeneously
    • But strategies encode many things 

 Prisoner's dilemma in any game:
  • a,a: both cooperate and both get highest possible reward. 
  • d,d: both defect and both get least possible reward. 
  • b,c: one cooperates and the other defects --> the defector gets the most benefit and the cooperator gets the least benefit. 
  • c,b: symmetric to the above. One cooperates and the other defects. The defector gets the most benefits, and the cooperator gets the least benefit as in c > a > d > b. 


No comments:

Post a Comment